3.432 \(\int (a+b \cos (c+d x))^3 \sec (c+d x) \, dx\)

Optimal. Leaf size=73 \[ \frac {a^3 \tanh ^{-1}(\sin (c+d x))}{d}+\frac {1}{2} b x \left (6 a^2+b^2\right )+\frac {5 a b^2 \sin (c+d x)}{2 d}+\frac {b^2 \sin (c+d x) (a+b \cos (c+d x))}{2 d} \]

[Out]

1/2*b*(6*a^2+b^2)*x+a^3*arctanh(sin(d*x+c))/d+5/2*a*b^2*sin(d*x+c)/d+1/2*b^2*(a+b*cos(d*x+c))*sin(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {2793, 3023, 2735, 3770} \[ \frac {1}{2} b x \left (6 a^2+b^2\right )+\frac {a^3 \tanh ^{-1}(\sin (c+d x))}{d}+\frac {5 a b^2 \sin (c+d x)}{2 d}+\frac {b^2 \sin (c+d x) (a+b \cos (c+d x))}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^3*Sec[c + d*x],x]

[Out]

(b*(6*a^2 + b^2)*x)/2 + (a^3*ArcTanh[Sin[c + d*x]])/d + (5*a*b^2*Sin[c + d*x])/(2*d) + (b^2*(a + b*Cos[c + d*x
])*Sin[c + d*x])/(2*d)

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2793

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n)), x] + Dist[1/(d
*(m + n)), Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^n*Simp[a^3*d*(m + n) + b^2*(b*c*(m - 2) + a*d
*(n + 1)) - b*(a*b*c - b^2*d*(m + n - 1) - 3*a^2*d*(m + n))*Sin[e + f*x] - b^2*(b*c*(m - 1) - a*d*(3*m + 2*n -
 2))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && GtQ[m, 2] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] ||
 (EqQ[a, 0] && NeQ[c, 0])))

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int (a+b \cos (c+d x))^3 \sec (c+d x) \, dx &=\frac {b^2 (a+b \cos (c+d x)) \sin (c+d x)}{2 d}+\frac {1}{2} \int \left (2 a^3+b \left (6 a^2+b^2\right ) \cos (c+d x)+5 a b^2 \cos ^2(c+d x)\right ) \sec (c+d x) \, dx\\ &=\frac {5 a b^2 \sin (c+d x)}{2 d}+\frac {b^2 (a+b \cos (c+d x)) \sin (c+d x)}{2 d}+\frac {1}{2} \int \left (2 a^3+b \left (6 a^2+b^2\right ) \cos (c+d x)\right ) \sec (c+d x) \, dx\\ &=\frac {1}{2} b \left (6 a^2+b^2\right ) x+\frac {5 a b^2 \sin (c+d x)}{2 d}+\frac {b^2 (a+b \cos (c+d x)) \sin (c+d x)}{2 d}+a^3 \int \sec (c+d x) \, dx\\ &=\frac {1}{2} b \left (6 a^2+b^2\right ) x+\frac {a^3 \tanh ^{-1}(\sin (c+d x))}{d}+\frac {5 a b^2 \sin (c+d x)}{2 d}+\frac {b^2 (a+b \cos (c+d x)) \sin (c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.14, size = 105, normalized size = 1.44 \[ \frac {-4 a^3 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+4 a^3 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )+2 b \left (6 a^2+b^2\right ) (c+d x)+12 a b^2 \sin (c+d x)+b^3 \sin (2 (c+d x))}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^3*Sec[c + d*x],x]

[Out]

(2*b*(6*a^2 + b^2)*(c + d*x) - 4*a^3*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + 4*a^3*Log[Cos[(c + d*x)/2] + S
in[(c + d*x)/2]] + 12*a*b^2*Sin[c + d*x] + b^3*Sin[2*(c + d*x)])/(4*d)

________________________________________________________________________________________

fricas [A]  time = 0.85, size = 72, normalized size = 0.99 \[ \frac {a^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - a^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + {\left (6 \, a^{2} b + b^{3}\right )} d x + {\left (b^{3} \cos \left (d x + c\right ) + 6 \, a b^{2}\right )} \sin \left (d x + c\right )}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3*sec(d*x+c),x, algorithm="fricas")

[Out]

1/2*(a^3*log(sin(d*x + c) + 1) - a^3*log(-sin(d*x + c) + 1) + (6*a^2*b + b^3)*d*x + (b^3*cos(d*x + c) + 6*a*b^
2)*sin(d*x + c))/d

________________________________________________________________________________________

giac [B]  time = 0.51, size = 137, normalized size = 1.88 \[ \frac {2 \, a^{3} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 2 \, a^{3} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + {\left (6 \, a^{2} b + b^{3}\right )} {\left (d x + c\right )} + \frac {2 \, {\left (6 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 6 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{2}}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3*sec(d*x+c),x, algorithm="giac")

[Out]

1/2*(2*a^3*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 2*a^3*log(abs(tan(1/2*d*x + 1/2*c) - 1)) + (6*a^2*b + b^3)*(d*
x + c) + 2*(6*a*b^2*tan(1/2*d*x + 1/2*c)^3 - b^3*tan(1/2*d*x + 1/2*c)^3 + 6*a*b^2*tan(1/2*d*x + 1/2*c) + b^3*t
an(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 + 1)^2)/d

________________________________________________________________________________________

maple [A]  time = 0.08, size = 90, normalized size = 1.23 \[ \frac {a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}+3 a^{2} b x +\frac {3 a^{2} b c}{d}+\frac {3 a \,b^{2} \sin \left (d x +c \right )}{d}+\frac {b^{3} \cos \left (d x +c \right ) \sin \left (d x +c \right )}{2 d}+\frac {b^{3} x}{2}+\frac {c \,b^{3}}{2 d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^3*sec(d*x+c),x)

[Out]

1/d*a^3*ln(sec(d*x+c)+tan(d*x+c))+3*a^2*b*x+3/d*a^2*b*c+3*a*b^2*sin(d*x+c)/d+1/2/d*b^3*cos(d*x+c)*sin(d*x+c)+1
/2*b^3*x+1/2/d*c*b^3

________________________________________________________________________________________

maxima [A]  time = 0.34, size = 69, normalized size = 0.95 \[ \frac {12 \, {\left (d x + c\right )} a^{2} b + {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} b^{3} + 4 \, a^{3} \log \left (\sec \left (d x + c\right ) + \tan \left (d x + c\right )\right ) + 12 \, a b^{2} \sin \left (d x + c\right )}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3*sec(d*x+c),x, algorithm="maxima")

[Out]

1/4*(12*(d*x + c)*a^2*b + (2*d*x + 2*c + sin(2*d*x + 2*c))*b^3 + 4*a^3*log(sec(d*x + c) + tan(d*x + c)) + 12*a
*b^2*sin(d*x + c))/d

________________________________________________________________________________________

mupad [B]  time = 0.72, size = 123, normalized size = 1.68 \[ \frac {2\,a^3\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {b^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {b^3\,\sin \left (2\,c+2\,d\,x\right )}{4\,d}+\frac {3\,a\,b^2\,\sin \left (c+d\,x\right )}{d}+\frac {6\,a^2\,b\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*cos(c + d*x))^3/cos(c + d*x),x)

[Out]

(2*a^3*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (b^3*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d +
 (b^3*sin(2*c + 2*d*x))/(4*d) + (3*a*b^2*sin(c + d*x))/d + (6*a^2*b*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)
))/d

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a + b \cos {\left (c + d x \right )}\right )^{3} \sec {\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**3*sec(d*x+c),x)

[Out]

Integral((a + b*cos(c + d*x))**3*sec(c + d*x), x)

________________________________________________________________________________________